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Title: Reciprocal congestion:  

The impacts of freight vehicles on cars’ travel times,  
and vice-versa 

 
Abstract  
 
Researchers recognize both the impacts of road congestion on the performance of freight transport 
operations and the impacts of road congestion caused by freight vehicles on private passengers’ travel 
times. However, it remains very complex to measure congestion at the scale of an urban area, because it 
requires traffic counts on a large portion of the road network. Moreover, the congestion impacts of 
private cars on the freight traffic have been rarely addressed in the literature. This paper presents a 
methodology allowing us to measure road congestion at an urban-level, using (macro) OD matrices and 
(micro) data for private passengers and freight vehicles in the case of the Paris Region (France). First, we 
develop one theoretical framework which enables us to express congestion functions of each traffic 
class (small or large vehicles) as well as the reciprocal influence each traffic class has on the other in 
terms of travel times. Then we present the empirical material used to test this framework. Building on 
our econometric results, we propose relationships expressing the travel times of each vehicle class as a 
function of similar and dissimilar types of vehicles’ traffic. Future research will rely on these functions to 
calculate various marginal congestion costs. 
 
Key-words: freight; road congestion; multi-class traffic; Paris region 
 

 
INTRODUCTION 
 
Urban areas are characterized by high density of activities and population. Very desirable advantages 
emerge from this spatial concentration: households and firms may access a large variety of jobs, goods 
and services; the flow and the spread of ideas are more intense; economic agents may share the funding 
of indivisible commodities (Duranton and Puga, 2003). But at the same time, high density can lead to 
several negative externalities (O’Sullivan, 2009) ranging, for instance, from expensive land rents, 
criminality, pollution, and congestion of the transport networks.  
 
Over the last fifty to sixty years, policies’ paradigm regarding automobile use and road infrastructure has 
evolved tremendously. During the post WW2 period, there was an incredible rise in the number of 
automobiles, accompanied by massive investments and spending on road infrastructures (Newman and 
Kenworthy, 1989). It was deemed that the best way to avoid road congestion in urban areas was to 
improve the existing stock of infrastructures (widening of roads, creation of expressways) and to build 
new highways or ring roads. This trend led to sprawling cities and the demand for road infrastructures 
rapidly caught up with the supply, leading to an increase in road congestion and time losses for 
commuters (the so-called “Downs Paradox”, see Duranton and Turner, 2011). Since the 90’s, the 
paradigm has shifted, both at the local and national scales. Most cities are now trying to limit the use of 
cars and are encouraging the use of public transport such as subway or bus lines (OECD, 1996).  
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While this strategy deals with passenger trips, it does nothing to prevent road congestion caused by 
freight trips. Freight transport operators have basic needs in terms of flexibility, reliability and most 
importantly, door-to-door trips (Nemoto et al., 2006). These needs make modal-shift impossible in most 
instances. For this reason, commercial transport relies on heavy and light road vehicles, such as van or 
trucks. As a result, freight trips remain one of the most challenging issues for local authorities willing to 
promote sustainable transportation. In many urban areas, such as the Paris region, this challenge has led 
to the progressive development of ideas such as “Low Emission Zones” (Proag and Patrick, 2012), using 
existing subway and tramway lines to carry goods (APUR, 2014), or the use of urban consolidation 
centers projects (Dablanc, 2005), although none have really come into fruition yet.  
 
 

PROJECT OBJECTIVE  
 
Purpose of study 
 
The issue of congestion is particularly important for the Paris region (“Ile-de-France”). Every year, more 
than 62% of kilometers of queues registered on French roads are located in the areas surrounding Paris 
(URF, 2013). The Paris region is one of the most congested urban areas in Europe: in 2013, motorists 
spent an average of 55.1 hours per year in traffic jams, only behind London and Stuttgart in Europe 
(INRIX, 2014). While congestion has been studied extensively from the perspective of passenger vehicles 
(Koning, 2013; Leurent and Breteau, 2009), very few studies have dealt with freight trips.  
 
This paper proposes an empirical assessment of road congestion in the case of multi-class traffic for the 
Paris Region. Understanding road congestion caused by freight vehicles is crucial in order to design and 
enforce adequate and efficient public policies. Moreover, we want to highlight the congestion impacts 
of private passengers’ trips on freight traffic. This reciprocal phenomenon has been rarely addressed in 
the literature. The two vehicle classes considered here are, on the one hand, small vehicles (cars and 
vans) and, on the other hand, trucks (large vehicles). This research is part of an ongoing project aimed at 
calculating marginal congestion costs for freight and passenger vehicles in the Paris Region. 

 
PROJECT DESCRIPTION  
  
One main issue when measuring road congestion in the Paris Region is that publicly available traffic data 
is very scarce, especially for large vehicles such as trucks. It is only available for the main highways, 
where heavy trucks are distinguished from small vehicles (private cars and vans). The distinction 
between vehicles’ size causes another problem for the measurement of congestion caused by freight 
vehicles. Thanks to the recent urban freight survey (“Enquête Transport de Marchandises en Villes”, 
ETMV), which was administered in 2010 in the Paris Region, we know that about 60% of freight 
movements (operations of deliveries and take-offs) are done using Light Goods vehicles (e.g. vans or 
cars). If we want to measure the impact of freight on congestion, we have to take into account small 
vehicles as well as heavy trucks. 
 
In this paper, we develop a theoretical framework in order to model the travel duration in the case of 
multi-class traffic. The rest of this research is organized as follows. First, we expose our theoretical 
framework for measuring congestion functions of each traffic class, and the reciprocal influence each 
traffic class has on the other in terms of road congestion. Second, we detail the empirical material used 
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to test this theoretical framework. Finally, we discuss our econometric results. Ulterior research will 
build on these to calculate various marginal congestion costs. 
 

 
RESEARCH APPROACH  
 
Conceptual framework 
 
We define road congestion as an event that appears as soon as a given infrastructure – characterized by 
fixed capacities – cannot satisfy the demand it faces without decreasing the quality of service proposed 
to users. This means that we only focus on “recurrent road congestion”: we ignore accidents or civil-
works related congestion (Skabardonis et al., 2003), which may affect the flows of vehicles punctually. 
We take into account the quality of service in relation to the travel time spent by individual trips on 
roads. As a consequence, we do not take into account the effect of congestion on departure and/or 
arrival time (Arnott et al., 1988; Vickrey, 1969) or drivers’ productivity and psychological states. 
 
In order to analyze congestion, engineers have proposed various methods (TRB, 2010; Small and 
Verhoef, 2007). One in particular relates to the relationship between travel-time and the flows of vehicle 
on a given infrastructure. This relationship has been studied traditionally through a “travel time-flow 
function” designed by the American Bureau of Public Road: 
 

         
 

 
 
 

            

 
Where   represents the travel time necessary to perform one kilometer on a given road (or over a given 
area);    characterizes the “empty road” travel time, i.e. the travel time in the case no single vehicle is 
using the infrastructure (often derived from the maximal authorized speed);   is the hourly vehicles flow 
on that infrastructure (per kilometer of road) and   is the theoretical road capacity (expressed in 
vehicle/hour/kilometer), i.e. a function of road width (number of lanes). 
 
For the purpose of our study, one important limitation of equation (1) is that it does not take into 
consideration multi-class traffic. F is considered as a flow of homogeneous vehicles, while a reasonable 
assumption can be made that big vehicles have a different impact on travel times compared to small 
vehicles.  
 
In order to correct this shortcoming, we differentiate the total flow of vehicle F observed on the road 
across traffic class i and j vehicles (Setra, 2001; Moridpour and al., 2015). Yun and al. (2010) suggest 
adapting equation (1), which then becomes: 
 

          
   

 
 
 

   
  

 
 
 

             

 
where    represents the hourly flow of class i vehicles,    the one of class j vehicles, and F the total 

traffic flow. The coefficient   describes the travel time – road usage relationship for class i vehicles, and 
  the one for class j vehicles. Note that if    = 0, then equation (2) collapses to equation (1).  
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Empirical specifications 
 
Equations (1) and (2) present important limitations. The first one is data requirements. In order to 
calculate time losses caused by road congestion for an agglomeration, one needs an extensive traffic 
database. Data from counts and captors sometimes exist, but they are scarce and not always reliable. 
Most existing studies rely on simulated traffic of vehicles (Yun et al., 2010). When studies use empirical 
data, it is difficult to generalize the results from a specific infrastructure to the adjacent roads in the 
area, because of the lack of knowledge on the traffic composition across vehicle classes i and j. 
 
More importantly, equations (1) and (2) focus only on the travel time of vehicles. However, they assume 
that the impact of traffic flow is homogeneous across vehicle classes. We make the hypothesis that 
incremental journey times due to the arrival of one additional truck are not homogeneous: The marginal 
truck is likely to affect differently the traffic speed of small vehicles (cars or vans) as compared to the 
one of large vehicles. This is a major limitation which may impact transport modeling tools or policies’ 
appraisals, such as optimal road pricing rules (Small and Verhoef, 2007).  
 
In order to overcome those limitations, we now focus on individual trips performed over some large 
geographical areas (origin-destination pairs rather than specific road segments). Starting from equation 
(2), we model the travel time      spent by one individual driving a class i vehicle, over a given origin-
destination (OD) k, during the time period t, as:  
 

           
    

    

  
   

    

   
                        

 

The variable    
  represents the minimal travel time necessary to realize the trip over the OD k if roads 

there were empty. It is found by crossing maximal authorized speeds on this OD with the distance 

travelled by the class i vehicle.    
  does not depend on the time period.  

 

The variable 
    

  
 describes the (similar) class i “flow-to-capacity ratio” faced, on the average, by the 

traveler on that OD, at that time period. Importantly, the class i flow      depends on both the 
considered OD and on the time period. By contrast, the road capacity    varies only across ODs.  
 

The variable 
    

   
 represents the share of (dissimilar) class j flow within the total traffic flow faced, on  

average, by the class i traveler. The class j flow     , as well as the total flow    , depend on both the OD 

k and the time period t. 
 
The vector     includes some control variables related to the trip made by the class i vehicle and the OD 
k. These variables are suspected to influence the travel duration. 
 
Importantly for our purpose, the dummy variable    is equal to 1 if the class i vehicle is a truck (0 
otherwise). 
 
Lastly,    corresponds to one error term assumed to have zero mean and constant variance. This 
statistical noise is required for empirical estimates of equation (3) through standard econometric 
techniques such as “Ordinary Least Squares” (OLS). 
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According to this framework, the main parameters of interest are    and   . They represent the impacts 
of similar (dissimilar respectively) traffic flows on the travel time spent by the individual i (j). In the case 
the vehicle i is a small one,     describes the influence of small vehicles on his own travel time and    
describes the influence of large vehicles.  
 
Equation (3) models the impacts of similar/dissimilar traffic flows as being homogeneous across vehicle 
classes. To relax this assumption, we can include “interaction terms”:  
 

           
    

    

  
   

    

   
    

    
    

 
    

  
   

 
    

   
                       

 
where parameters   

 ,   
  and   

  can be considered as “sensitivity premiums”.  
 
To fix ideas, suppose that individual i is driving a truck (    ). In that case, the influences of minimal 
travel time, similar traffic flow and dissimilar traffic share on his own travel time will be equal to 
       

  ,        
   and        

   respectively. By contrast, if individual i is driving a small vehicle 
(    ), respective impacts will be   ,    and   . As a consequence, the statistical significance and the 
signs of   

 ,   
  and   

  inform us about the differentiated responses of trucks’ travel times to the 
surrounding traffic conditions. 
 
Equations (3) and (4) assume that the relationship between travel time and traffic flows is linear. 
Obviously, alternative specifications (logarithmic, exponential…) should be tested in order to select the 
one that fits the best with the data. We now present the material allowing us to test empirically this 
simple framework of multi-class road congestion.  
 

 
DATA  
 
The challenge is to gather empirical data that can be used within this framework. In particular, we need 
data to describe     ,      and   , respectively the flow of class i vehicles on a given OD during a given 

time period, the flow of class j vehicles on a given OD during a given time period, and the road capacity 
on a given OD.  
 
In this paper, we model road congestion at a macroscopic scale, in large geographic areas. As a 
consequence, we have divided the Ile-de-France region in three concentric zones: Paris (the center of 
the region), the inner suburbs, and the outer suburbs. The different time periods were defined as the 
morning peak-hours (6-9 am), the afternoon peak-hours (4-7 pm), and the rest of the day.  
 
The measure of the supply of road infrastructure comes from a database of the National Institute of 
Geography (“Institut de Géographie National”), “BD TOPO”, which contains all the roads of the Paris 
Region, in the form of GIS. As our approach of congestion is very macroscopic, we chose to only select 
the main roadways. The IGN has built a distinction between the main and the secondary networks. It 
does not depend on the administrative class of the road (national, regional or municipal), but the 
importance of the road to the traffic. Therefore, the selected roads are those where most of the traffic 
of Ile-de-France is located. Each road is graded from 1 to 6, 1 being the most important (IGN, 2008). We 
chose roads of importance equal to 1 or 2 (except for Paris, which does not have roads of importance 
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level equal to 1, since there are no highways in Paris; therefore, we chose to include the main network 
of Paris, streets with an importance equal to 3).  
 
 

Figure 1 - The Paris region and its road infrastructure, divided in three concentric zones 

 
 

 
One of the main advantages of the “BD TOPO” database is that it contains information on the physical 
characteristics of the selected roads. It gives information on the length, width and number of lanes of 
each segment of the road network. This allows us to compute the supply of road infrastructure for each 
OD pairs    by multiplying each kilometer of road lanes by 2,200 vehicles/hour. The latter threshold is 
generally considered as the theoretical capacity of the main roads in France. In order to calculate the 

minimal travel time (   
  in previous equations), we also gathered data on speed of the road networks, 

according to the average authorized speed of the various administrative categories of roads: 120 km/h 
for highways, 90 km/h for national expressways, 70 km/h for smaller roads and for the rings road 
around Paris. The streets in Paris were assigned a speed of 30 km/h.  
 
The measure of traffic flows      and      has been estimated using various sources. For passenger 

transportation, we use a household mobility survey, the EGT (“Enquête Globale Transport”). The last EGT 
took place in 2010 in the Paris Region. It uses a standard methodology, developed in France and used by 
all local authorities (Certu, 2013). It was administered to a representative sample of 18,000 households, 
43,000 persons, for over a week. In total, 143,000 trips were recorded. The EGT survey gives us 
information on the transport mode used, distance travelled, duration, hour of departure/arrival, origin 
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and destination of each trip…. Each observation is weighted according to the socio-economic 
characteristics of the surveyed person and household. This allows us to compute an OD matrix for 
private passengers’ cars in the Paris Region. 
 
The freight flows were obtained using the “Freturb” software, developed by the Laboratory of Transport 
Economics (Lyon University). The results of Freturb are based on surveys administered in French cities in 
the 90’s: over 5,000 establishments and over 1,000 freight tours were surveyed. These surveys give a lot 
of information on urban freight, and most importantly, the “generation coefficients” of establishments, 
and the distance travelled during freight tours. The methodology for the freight simulation is presented 
in details in Routhier and Toilier (2007). It relies on an establishment database, in this case the “Altarès” 
database, which is an extraction of the “Sirene” database for the Ile-de-France region.  
 
The Freturb approach is quite different from traditional “4-steps” models. First, it generates goods 
movements, according to the size and activity type of establishments. Then it distinguishes between 
tours and single-trips. It generates distance functions, according to several variables (type of 
establishment, type of vehicle, distance from the city center, transport operator). Finally, it simulates 
the distribution using a “shortest-path” algorithm. The output is an OD matrix for several time periods, 
distinguishing between light vehicles (<3.5T in France, e.g. vans essentially), and heavy vehicles (trucks).  
 

Table 1 – Average hourly kilometric traffic flows by OD for cars, vans and trucks 

  Cars Vans Small Vehicles Trucks  Total 

Paris - Paris 538.5 19.1 557.6 12.1 569.7 

Paris - Inner Sub. 544.6 23.5 568.1 17.5 585.6 

Paris - Outer Sub. 424.9 10.9 435.8 8.3 444.1 

Inner Sub. - Inner Sub. 827.2 28.1 855.3 21.9 877.2 

Inner Sub. - Outer Sub. 432.2 8.9 441.1 7 448.1 

Outer Sub. - Outer Sub. 381.9 6.6 388.4 5.5 393.9 
Sources: EGT and Freturb 

 
Table 1 crosses information obtained from both EGT and Freturb. We can make several observations. 
First, a large majority of the urban traffic in the Paris region is generated by passenger vehicles. 
Depending on the OD, average goods vehicles flow represent only between 3% and 7% of the total 
traffic. Another aspect to consider (especially for a multi-class traffic analysis), is that heavy goods 
vehicles do not represent the majority of goods vehicles traffic. Trucks represent between 38% and 45% 
of goods traffic, and between 1% and 3% of the total traffic. These are not surprising results: from the 
urban freight survey of the Ile-de-France region collected in 2010 (ETMV), we know that about 60% of all 
the operations of deliveries and take-offs are made using light goods vehicles.  
 
The spatial distribution of the hourly kilometric traffic illustrates that the traffic is highly concentrated in 
the center of the agglomeration, for the Paris–Paris OD but also for the Paris–Inner Surburbs. 
Interestingly, the highest number of vehicles per kilometer of lane per hour is in the Inner Suburbs, 
especially for passenger vehicles, which makes sense considering relatively low percentage of motorized 
households in central Paris (45% against 70% for the inner suburbs and 85% for the outer suburbs). The 
low number of hourly traffic per kilometer in the Outer Suburbs can be explained by the very low 
density of these areas of the region, despite the very intense use of personal vehicles by the population 
of these parts of the Ile-de-France region.  
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Next to these aggregated OD matrices, empirical estimates presented in the next section are based on 
data on individual trips for passenger and freight, between the OD pairs considered and over the three 
time periods. We have used the two databases at our disposal. The first one is the household mobility 
survey (EGT) where each observation is now considered as a single trip. It contains the origin and 
destination, the time of day the observed trip was realized, its distance as well as its duration. The 
distance was one Euclidian distance, which was converted into a “network distance” following a 
standard methodology developed by the CERTU for French urban areas (CERTU, 2005).  
 
For freight trips, we used data from the 2010 urban freight survey (ETMV) which was administered by 
the Laboratory of Transport Economics in the Ile-de-France region (Patier and Routhier, 2009). This 
survey is composed of two distinct sub-surveys: one about the economic establishments, and the other 
one about the delivery-drivers which serve the surveyed establishments. We used the delivery driver 
survey. In total, 345 freight tours were surveyed with an embarked investigator on board the vehicle. 
The investigator described precisely each trip of the vehicle between the different establishments. For 
the need of our paper, these 345 tours were decomposed into 2,000 trips with the following variables: 
origin and destination, hour of the day, duration and length of the trip.  

 
One major problem with this data is the big discrepancy between the number of observations for 
passenger trips and the number of observations for goods trips. We had a precise description for about 
47,000 passenger trips, but only a little more than 2,000 for goods trips. Therefore, we chose to weight 
each trip according to the importance it had on the flow of a type of vehicles, on a given OD and at a 
given time of day. Therefore, the weight      of the trip is equal to: 
 

     
    

     
          

 
 
where      is the flow of vehicle   (passenger cars, light goods vehicles or heavy goods vehicles) on OD   
during the time period   (morning peak hours, afternoon peak hours or rest of the day), divided by the 
number of observations       for each vehicle/OD/time period combinations. When estimating the 
impact of the traffic flow on the travel times in the next section, each trip is weighted according to its 
importance within the total flow. Therefore, all the values in Table 2 are weighted. In addition to the 
main variables specified in equations (3)-(4), we consider as “controls” of the travel times the area of the 
studied ODs as well as the fact that the origin and/or destination of the observed trips are (or not) Paris.   
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Table 2 – Summary statistics 

 
Average St. Dev. Min. Max. Obs. 

     (min.) 40.46 29.80 1 198 49,822 

Distance (km) 18.78 18.62 0.078 162 49,822 

Maximal speed (km/h) 79.28 3.41 65.07 81.52 49,822 

   
  (min) 14.06 13.78 0.06 120.23 49,822 

     (veh/km/h) 644.76 456.50 3.26 1,823.398 49,822 

     (veh/km/h) 25.85 112.25 3.26 1,823.398 49,822 

   (veh/km/h) 9,061.45 2,862.94 4,605.81 12,150.11 49,822 

    

  
 0.08 0.07 0.0004 0.34 49,822 

    

   
 0.003 0.02 0.0004 0.34 49,822 

Trucks (%) 2 1.5 0 1 49,822 

Goods (%) 5 2.2 0 1 49,822 

Area (1000 km2) 8.60 4.98 0.10 11.90 49,822 

Paris (%) 44.0 50.0 0 1 49,822 
Sources: BD TOPO, EGT and ETMV 

 

 
 
ANALYSIS AND RESULTS 
  
This section focuses on the econometric results of equations (3) and (4), estimated through OLS. For 
each variable, Table 3 gives an estimate of the coefficient, its t-stat and statistical significance (measured 
by the p-value: *** means p-value < 0.001; ** means p-value < 0.01; * means p-value < 0.05). Table 3 
also gives the performance of each model according to the adjusted R². Models were tested with the 
linear-linear and log-log (where both dependent and independent variables are expressed in logarithms) 
specifications. According to the R2 statistics, the latter explains a larger share (96%) of the dependent 
variable’s observed variability. As a consequence, more emphasis should be given to its results. Several 
conclusions emerge. 
 
First, the travel time is positively influenced by the minimal travel time, whatever the model considered. 
Put differently, the longer the distance and/or the lower the authorized maximal speed on the OD k, the 
longer the travel time. Second, the time spent by class i vehicles is positively correlated with the “flow-
to-capacity ratio” of similar vehicles. This is consistent with the existence of road congestion. 
Importantly, we observe that the influence of dissimilar traffic class flow j is often more important: The 
parameter associated with the share of dissimilar vehicles within total traffic flow is generally larger 
than the one associated with the flow to capacity ratio of class i vehicles.  
 
 
 

Table 3 - OLS estimates  
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 Lin-Lin Lin-Lin Log-Log Log-Log 

Variables                                 

   
  1.38*** 

(0.00) 
1.38*** 
(0.00) 

0.63*** 
(0.00) 

0.63*** 
(0.00) 

    

  
 

18.40*** 
(1.35) 

18.67*** 
(1.35) 

0.19*** 
(0.01) 

0.21*** 
(0.01) 

    

   
 

9.66*** 
(0.29) 

9.54*** 
(0.29) 

67.75*** 
(0.53) 

70.08*** 
(0.54) 

   -0.74 
(0.86) 

- -43.50*** 
(0.18) 

- 

   
    - 0.45 

(0.05) 
- -0.09*** 

(0.02) 
    

  
   

- 1758.23*** 
(351.97) 

- 0.22*** 
(0.03) 

    

   
   

- -2.20*** 
(0.72) 

- -63.54*** 
(0.58) 

       -12.96*** 
(0.53) 

-12.94*** 
(0.53) 

-0.38*** 
(0.18) 

-0.38*** 
(0.18) 

      0.45*** 
(0.22) 

0.46*** 
(0.22) 

-0.38*** 
(0.18) 

-0.38*** 
(0.018) 

       14.08*** 
(0.21) 

14.13*** 
(0.0.22) 

0.34*** 
(0.01) 

0.34*** 
(0.01) 

Observations 49,822 49,822 49,822 49,822 

R2 84.9 84.9 96.2 96.2 

 
 
In order to investigate this effect more in depth, we can look at models with interaction terms in 
equation (4). Given the R2 statistics, we focus on the preferred log-log model (the last column in table 3). 
As made clear, trucks are more sensitive than small vehicles to the minimal travel time, to the traffic 
flow of vehicles belonging to the same class and to the share of dissimilar vehicles class within total 
traffic. Put differently, trucks are more disturbed by the flow of trucks than cars are impacted by the 
flow of cars. Moreover, the trucks’ travel time responds differently to the change in small vehicles flow 
as compared to the changes of cars’ or vans’ travel times in the case where the share of trucks increases. 
These are important results in that congestion impacts of similar/dissimilar traffic flows will vary 
according to the type of vehicles (see below).   
 
Lastly, coefficients of most control variables are statistically different from zero. Thus trips linked to 
goods’ movements are shorter than trips made by private passengers. Moreover, trips having Paris as 
origin and/or destination are likely longer. In addition, the bigger the area of the observed OD, the 
longer the travel time. 
  
The parameters can be used to calibrate travel time-flow relationships. We distinguish small (S) and 
large (L) vehicles to get equations (5) and (6): 
 

     
                   

           
  

  

  
              

  
  

   
           

And: 
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Using the exponential transformation, the travel time-flow relationships for small (S) and large (L) 
vehicles can be re-written as: 

  
           

        
  

  

  
        

  
  

   
                

  
           

        
  

  

  
        

  
  

   
               

 
Figures 2 and 3 depict travel times of small and large vehicles as a function of different levels of different 
traffic classes. As made clear, travel times are an increasing function of the “flow-to-capacity ratio”, in 
line with conventional BPR relationships. However, the (positive) slope of these functions is clearly 
larger for large vehicles (trucks) as compared to small vehicles (cars or vans). 
 
 

Figure 2 – The travel time of small vehicles, according to the flow of small vehicles and the share of 
large vehicles (LV) on total traffic 

 
 
 

 
Moreover, we observe that the share of dissimilar vehicles within the total traffic flow has a stronger 
impact on travel times for cars and vans than for trucks. For a given level of small vehicles traffic (650 
veh/h/km for instance), the mean travel time is equal to 50 minutes approximately if trucks represent 
2% of total traffic. Travel duration will rise to 80 minutes if the share of trucks increases to 3% of total 
traffic. By contrast, the maximum growth of trucks’ travel times, whatever the level of large vehicles 
traffic and/or the share of small vehicles within total traffic, never exceeds 10 minutes. As a result, 
additional time losses for private passengers or vans caused by an incremental truck are likely more 
expensive than those incurred to trucks in the case small vehicles’ traffic would increase.   
 
 

 
Figure 3 – The travel time of large vehicles, according to the flow of large vehicles and the share of 

small vehicles (SV) on total traffic 
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CONCLUSIONS 
 
The aim of this research project was to calculate the impact of freight flows on traffic congestion in the 
Ile-de-France region. Having an accurate estimation of congestion levels for urban areas is extremely 
difficult, because traditional travel time-flow relationship functions require extensive traffic databases. 
Also, distinguishing small freight vehicles and passenger vehicles is almost impossible using traditional 
counting methods. In this research, we took advantage of two big surveys administered at the same 
time (2010) in the Paris Region: the household mobility survey (EGT) for passengers and the urban 
freight survey (ETMV).  
 
The econometric analysis uses these databases. The results show that the theoretical model performs 
well: the travel time of an individual trip is positively impacted by the ‘flow-to-capacity ratio” on a given 
origin-destination combination. We can also conclude that large vehicles have a bigger impact on travel 
times of small vehicles, and that they are more impacted by the “flow-to-capacity ratio” of similar 
vehicles, compared to small vehicles. Figures 2 and 3 show that one additional percent of large vehicles 
within the total traffic has a much bigger impact than one additional percent of small vehicles.  
 
These results allow us to calibrate travel time-flows relationships. In future research, these will allow us 
to calculate marginal social and external costs functions, as well as point estimates, differentiated for 
passenger vehicles, small freight vehicles and large freight vehicles. This research has potentially 
valuable policy implications: we will be able to propose marginal congestion costs useful in the 
framework of costs-benefits analyses.  Optimal pricing rules could be also questioned in the light of the 
reciprocal congestion impacts of each vehicle class.  
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